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Abstract-Cooperation among nodes is essential for the reliable 
routing of packets in large scale wireless sensor networks from 
nodes to base station. Most of the previous works have assumed a 
single governing authority with full cooperation among nodes. 
The assumption of node cooperation, however, cannot be applied 
to wireless sensor networks (WSNs) with more than one 
governing authority. In this paper, we introduce the concept of 
multi-class wireless sensor networks where each class is governed 
by a different authority. We study the evolution of cooperation in 
static and mobile multi-class wireless sensor networks using 
Evolutionary Game Theory which has, to the best of our 
knowledge, never been attempted before.  We then propose a 
novel localized distributive algorithm we call the Patient Grim 
Strategy (PGS), and demonstrate that it provides a Nash 
equilibrium solution to the game theoretic problem of 
cooperation in multi-class static wireless sensor networks. Our 
simulation results show that in static multi-class WSNs 
populations playing the prisoner’s dilemma, significant 
propensities to cooperate can evolve.   
 

Keywords-wireless sensor network; cooperation; evolutionary 
game theory; muti-class; patient grim strategy. 

  
I. INTRODUCTION 

 
Wireless sensor nodes are miniature communication, 

sensing and data processing devices. Their application include 
military, factory instrumentation, climate control, 
environmental monitoring, and building safety [1, 2]. We 
foresee a future where sensor networks will go beyond the 
boundaries of a single authority, where groups of 
people/institutions with common interest collaborate. In such 
situations, negotiations need to take place to prevent the nodes 
of one user from being depleted of power while the other 
users’ networks remain relatively intact, and their nodes with 
ample battery power. If we assume that all the users are 
rational and thus act in their own best interest, then they may 
drop all the packets originated and destined to other networks 
that they are asked to relay. This would lead to a breakdown in 
cooperation and a significant decrease in throughput. To 
sustain cooperation, rational users must stand to benefit more 
than they stand to lose in interactions that require cooperation, 

unless cooperation is enforced via a global policy. If a global 
policy exists, then users that deviate from the rules would be 
punished more severely than any loss they would incur in 
cooperating; thus they would choose to cooperate. However, 
in this context, the distributive nature of wireless sensor 
networks, that is, the lack of centralized administration, and 
the multi-governing authorities make this very challenging, if 
not infeasible. 

Recently, game theoretical analysis and modeling of ad 
hoc networks have attracted an increasing number of 
researchers [3, 4] .  Classical game theory, however, relies on 
several assumptions that do not seem appropriate for ad hoc 
and sensor networks. In particular, players are assumed to 
have complete information about the game and also about the 
behavior of opponents. In addition, the players are assumed to 
be rational. For sensor networks this would imply that the 
nodes do a fair bit of computing to calculate and store all the 
possible strategies and actions of themselves and other nodes. 
Alternatively, if the processing is done by the more powerful 
sink then each node would be required to frequently 
communicate with the sink. Either way, this would be 
impractical given the limited memory and power capacities of 
wireless sensor nodes.   

We believe that a more appropriate model can be 
developed using Evolutionary game theory [5]. In this 
approach the assumption of rationality, knowledge of game, 
and complete information of opponents’ behavior are relaxed. 
Only local information is required. The main assumption is 
that players learn how to perform well in the game by 
experience or by being preprogrammed with a ‘set of actions 
to perform’. Over time, the players have the chance to 
maximize their personal benefit by reacting to simple 
observation.   

In this paper, we study a finite but large population of 
multi-class wireless sensor networks. We define a model and 
use the prisoner dilemma game to study the evolution of 
cooperation in static and mobile multi-class WSNs. Our 
contributions are: (i) we determined some conditions under 
which spatially dispersed multi-class wireless sensor networks 
exhibit tendencies to cooperate, and (ii) we propose a 
localized distributed and scalable algorithm we call the Patient 
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Grim Strategy (PGS), which enforces cooperation in wireless 
sensor networks.     

The remainder of the paper is organized as follows. In the 
next section, we discuss related works focusing our attention 
on mechanisms that stimulate cooperation. In section 3, we 
present our model and our main assumptions. This is followed 
by our game in section 4. In section 5, we present some 
analytical results. Our Patient Grim Strategy is presented in 
section 6. We then present our simulation in section 7. We 
draw some conclusions in section 8. 
 

II. RELATED WORK 
 
The operation of ad hoc networks depends on the cooperation 
of participating nodes. Since nodes have limited resources, in 
particular battery power, cooperation may come at a 
significant expense. In addition, since in many applications 
each node is governed by a different authority (user) 
cooperation cannot be assumed to exist. It is reasonable to 
assume that each node has the goal of strategically 
maximizing its own benefit by utilizing network services 
while simultaneously minimizing its contribution to the 
network. This has encouraged researchers to use game theory 
as a tool in modeling cooperation among nodes in wireless ad 
hoc networks as strategic interactions among rational players.  

While the topic of cooperation in wireless ad hoc 
networks has been addressed in several works only a few 
attempts to address the issue in wireless sensor networks. Our 
work is closest in nature to [6] . In [6], Felegyhazi et al. 
introduced the concept of multi-domain sensor networks. The 
authors proposed a game-theoretic model to investigate the 
impact of cooperation and show the conditions under which 
cooperation is the best strategy. Our work differs in several 
ways. Firstly, we used evolutionary game theory to investigate 
cooperation in multi-class sensor networks, which we believe 
was, to the best of our knowledge, never considered before. 
Secondly, we investigate the effect of mobility versus a fixed 
network topology on cooperation among nodes. Finally, we 
propose a novel localized cooperation enforcement protocol, 
Patient Grim Strategy. Our protocol belongs to the class of 
enforcement protocol that discourages uncooperative behavior 
through punishment. 
 
A..  Mechanisms to Motivate Cooperation 

There are generally two approaches to motivate 
cooperation among network nodes: (i) punishment 
mechanisms and (ii) incentive mechanisms. Works that have 
employed punishment generally use a reputation mechanism 
to detect selfish or misbehaving nodes and to deny these nodes 
future network services. Incentive mechanism schemes 
include methods that reward cooperative nodes with some 
form of payment. In addition, a few works have explored the 
possibility of spontaneous cooperation, that is, cooperation 
that emerges without any incentive or punishment. Following 
is an overview of these approaches. 

Marti et al. [7] proposed mechanisms to consider an ad 
hoc network with misbehaving or un-cooperating nodes that 

initially agree to forward packets but fail to do so. The authors 
proposed two mechanisms to mitigate this problem. The first, 
called watchdog, identifies misbehaving nodes, and the other, 
called pathrater, helps routing protocols avoid these 
misbehaving or uncooperative nodes. However, their solution 
fails to punish misbehaving nodes, and therefore presents no 
incentive for nodes to cooperate. In addressing this 
shortcoming, Buchegger et al. [8] proposed a reputation based 
system where nodes observe the behavior of each other and 
store the information locally. Periodically, this information is 
distributed in reputation reports. According to their results, 
nodes are able to selectively deny forwarding packets from 
misbehaving or uncooperative nodes; thus facilitating the 
punishment of un-cooperative nodes.   

A reputation-based framework for wireless sensor 
network that utilizes Bayesian formulation and beta 
distribution is proposed in [9]. Watchdog mechanism resides 
in the middleware of each node and collects observable 
information. Second hand information is also included in the 
statistical computation of reputation. This information is 
gathered from nodes in the neighborhood. Direct observation 
and second hand information together facilitates a 
decentralized reputation based systems. A trust based system 
is developed using reputation that facilitates punishment of 
non-cooperating (malicious) nodes by denying them access to 
network resources.  

Levin [10] proposes a new mechanism: punishment via 
channel jamming. The author argues that isolation does not 
always ensure cooperation. On the other hand, jamming, 
though seemingly malicious, is a viable means by which to 
enforce cooperation of each node in the system, even when 
there are neighbors acting in a collusive manner by 
communicating only with one another. As the author himself 
points out, the price of jamming, if not engineered in a careful 
manner can be high, resulting in a significant loss of system 
efficiency. 

Mahajan et al. [11] proposed Catch, a protocol that uses 
anonymous messaging to detect free riders, i.e. nodes that 
send their own packets but do not forward packets from 
others, and disconnect them from the rest of the network. 
Catch uses an existing majority of cooperative nodes to 
collectively discourage a minority of selfish nodes from free 
riding. According to the authors, Catch assures that 
cooperation is an evolutionary stable strategy.    

Incentive mechanisms to stimulate cooperation are 
proposed in [12-14]. In these mechanisms if a node wants to 
send its own packets, it has to pay. However, if a node 
forwards a packet for the benefit of another node, it is paid. 
These schemes rely on a trusted central authority or tamper-
proof hardware to ensure the integrity of the virtual currency, 
and to redistribute wealth so that even nodes that are not in a 
position to forward for others can send their packets. A major 
drawback of these schemes is that incentives fail to encourage 
forwarding in nodes that have very little data of their own to 
send. This can lead to a disconnected network when light-
senders are located at strategic points in the topology of the 
network. Another drawback is that further research is needed 
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to develop trusted and efficient mechanisms to ensure the 
generation of high integrity virtual currencies.  

Spontaneous cooperation is investigated by Srinivasan et 
al [3]. This work focuses on the energy-efficient aspects of 
cooperation without any incentive mechanism. Urpi et al [15] 
propose a general framework for cooperation without 
incentive. Felegyhazi et al [4] concentrated on the connection 
between the network topology and the possible existence of 
cooperation. They proposed a model based on game theory 
and graph theory to investigate equilibrium conditions of 
packet forwarding strategies. We agree with their conclusion 
that in static ad hoc networks- where the relationships between 
the nodes are likely to be stable- cooperation needs to be 
encouraged.     

  
III. MODEL ASSUMPTIONS 

 
We consider a large scale deployment of a wireless sensor 

network with n classes, where n >>1. We define class as 
follows: a homogenous group of wireless sensor nodes that 
have localized control, total cooperation among nodes, and a 
single governing authority.  Let us denote a single class as ic  
and the set of all classes by C, i.e. C={c1, c2, c3,…..cn }. We 
assume the network to be an arbitrary, connected graph, G= 
(V, E), of selfish classes, where each vertex corresponds to a 
class in the network. By selfish we mean that any Cci ∈ will 
act strategically to maximize its benefit over time. 
Edge ),( ji cc  is in E if, and only if, ic and jc are one hop 
neighbors. We consider two classes as one hop neighbors if 
any two nodes, one from each class, are within transmission 
range.  

In our model G is strongly connected, that is, any two 
non-neighboring classes Ccc ji ∈,   can communicate via 
multi-hop routing. This means that packets from the source to 
the destination are forwarded by intermediate nodes. We 
assume that each class Cci ∈  knows its active connections 
and acts strategically to optimize goodput across these 
connections.  

In dealing with interclass relaying, that is, data-
forwarding between classes, the class either cooperate or 
defect. A class cooperates if it relays the packets in response 
to a data forwarding request. If it drops the packets, then it 
defects. We limit our study to the forwarding of packets 
between classes in a multi-class wireless sensor network.  

We assume that all communication packets are equal in 
size. In transmitting or retransmitting packets, the classes 
expend battery power equivalent to a disincentive in the 
amount β and gain an incentive for cooperation in the amount 
γ. If classes refuse to cooperate (retransmit) they gain φ  and 
there is no cost to them. We ignore the power used up in 
receiving and listening. Ignoring these should have no effect 
on our model if we assume that these losses are equally 
distributed in our population.  The following inequality 
holds: 0>> βγ  

We assume that the sensor nodes in a class all operate in 
the promiscuous mode and are able to determine the response 
of neighboring classes in all interactions through monitoring 
techniques such as watchdog [7]. We assume that the 
communication channel is bidirectional and no loss occurs due 
to noise. Therefore, any loss of packet is as a result of 
defection. A class is considered inactive on the depletion of 
the battery of its first wireless sensor node.  

We investigate two scenarios: (i) scenario 1: packet 
forwarding between mobile classes, and (ii) scenario 2: packet 
forwarding between spatially dispersed stationary classes. We 
then examine our PGS algorithm.  

 
IV. GAME 

 
Motivated by the iterated prisoner dilemma game, we 

develop two games; one for each of the scenarios that were 
previously mentioned. Firstly, we present the common 
parameters of both games. We then discuss the games 
separately. 

Evolutionary game theory [5] provides an appropriate tool 
to model strategic decision situations. In our system, the 
authorities have to decide, whether to cooperate or not in the 
forwarding of packets between classes of wireless sensor 
nodes. We model this as a non-cooperative iterated N-player 
game g =(P, S, U), where P denotes the set of players, S the 
set of strategies and U is the set of utility functions or payoff. 
We assume that the game is infinite, this can be approximated 
if there is a very small probability the game may end in any 
round. In other words, the players are unaware of the ending 
of the game. The game ends when only two classes remain 
active. This is so because we are concerning ourselves with 
packet forwarding between classes, which is only necessary in 
a network with more than two classes.  

We assume time is divided into time units called time 
slots. Once per time slot t the sensors of each class send 
packets to be forwarded to a neighboring class. In each time 
slot, the players decide whether to cooperate or defect. We 
assume that each time slot is long enough to facilitate the 
delivery of all the packets, and the decision making processes.  

For consistency with commonly used notation, we 
develop our payoff matrix as follows. For mutual cooperation, 
each player gets the reward R, where R= γ-β.  For mutual 
defection each player gets the punishment P, where P=0. If 
one player cooperates and the other defects, the cooperator is 
left with the suckers payoff, S, where S= -β while the defector 
gets away with the temptation to defect T, where T=γ.  It is 
clear that T>R>P>S. We assume that 2R> T + S i.e. in 
repeated encounters mutual cooperation returns the highest 
collective payoff. 
 

 
Figure 1. Payoff matrix for wireless sensor classes ic  and jc , where 

ji ≠  and Ccc ji ∈,  

491



 

If we let cooperate be denoted by 1a  and defect by 2a  

then the action set is A={ 1a , 2a }. Theoretically, players could 
seek several combination of action over time. However, we 
limit our study to either of the following two strategies. 

 
i) S1={ 1a , 1a , 1a ,…..} i.e. always cooperate 

ii) S2={ 2a , 2a , 2a ,...}  i.e. always defect 
 

Since we are primarily using Evolutionary game theory in our 
investigation we assume that the sensors in all the classes are 
preprogrammed with one of these strategies.  
 
A..  Scenario 1: Packet Forwarding between Mobile Classes 

In this scenario, the game modeled is the iterated N player 
prisoner dilemma game. We note the following assumptions:  

(i) the game is infinite 
(ii) players randomly interact with other players 
(iii) the game is symmetrical, i.e. players have mutual 

interest in having their packet forwarded by the 
other  

 
B. Scenario 2: Packet Forwarding between Spatially 
Dispersed Stationary Classes 

The iterated N-player prisoner dilemma game is an 
effective model for many situations that involve strategic 
decision making. Like most N-player game it is based on the 
following assumptions:  

(i) players randomly interact with other players 
(ii) the game is symmetrical 

 
However, these assumptions may not apply to many ad 

hoc packet forwarding games. We can appropriately modify 
these games to be suitable for networking conditions by the 
inclusion of additional parameters [16]. In this respect, we 
extend our game and redefine it as g=(P,S,U, G) where G, the 
additional parameter, denotes the graph G= (V,E). This means 
that games are only played between a pair of classes ic  and 

jc  if  Ecc ji ∈),(  i.e. if ic  and jc  are neighbors. For 
comparative purposes with our previous scenario we maintain 
the assumption of symmetry. Nonetheless, we note that in ad 
hoc and sensor networks some neighbors’ interests may be 
asymmetric. 
  

V. ANALYSIS 
 

We now investigate the evolution of cooperation in a 
large population of wireless sensor classes with cooperators 
and defectors.  

 
A..  Scenario 1: Packet Forwarding between Mobile Classes  

Since the population is large, the replicator dynamics can 
be used to model the population playing the iterated N-player 
prisoner dilemma. In this case, we can represent the state of 
the population by noting what proportion follows each 

strategy. Let pc and pd denote these proportions. Also, let us 
denote the average fitness (payoff) of cooperators and 
defectors by FC and FD, respectively, while  F  denote the 
average fitness of the entire population. Let ∆F(sc,sd) denote 
the change in fitness for a class following strategy sc 
(COOPERATE) against an opponent following strategy sd 
(DEFECT). Suppose that each class in the population has an 
initial fitness of F0. Then the expected fitness of Cooperating 
and Defecting can be expressed as: 
 
FC= F0 + pc∆F(sc,sc) + pd∆F(sc,sd)                                        (1)                
    = F0 + pcR + pdS 
and  
 FD=F0 + pc∆F(sd,sc ) + pd∆F(sd,sd)                                      (2) 
        = F0 + pcT + pdP 
 
Since in the payoff matrix for the prisoner dilemma game T>R 
and P>S, it follows that FD>FC and hence FD> F > FC. 
Therefore, 
 

0>−
F

FFD  , and                                                                (3) 

0<
−

F
FFC                                                                          (4) 

 
The strategy frequencies for Defect and Cooperate in the next 
generation are given by  
 

F
FFpdt

p D
d

d −= .                                                           (5) 

and, 

F
FF

pdt
p C

c
c

−
= .                                                      (6)                   

 
respectively. Thus, it is clear that over time the proportion of 
the population choosing the strategy COOPERATE eventually 
becomes extinct. The only stable strategy is DEFECT.   
 
B.  Scenario 2:Packet Forwarding between Spatially 
Dispersed Stationary Classes  

In this scenario, we use simulation to validate our 
findings. Our results, which are discussed in detail in section 
VII part B, show that significant propensities to cooperate can 
evolve among spatially dispersed stationary wireless sensor 
classes. In spatial settings wireless sensor classes with a 
greater willingness to cooperate can thrive by forming clusters 
among themselves, and thus reducing exploitation by less 
cooperative classes.  

 
VI.  PATIENT GRIM STRATEGY 

 
We now introduce our Patient Grim Strategy. We  
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consider a spatially dispersed large population of stationary 
wireless sensor classes playing the prisoner’s dilemma with 
the payoff matrix as shown in figure 1. We assume that time is 
slotted and each slot is independent of all others.  The payoff 
to each is the sum of the payoffs over all periods, weighted by 
a discount factor δ, with 0< δ <1. We assume that each class is 
playing our Patient Grim Strategy. The Patient Grim Strategy 
is defined as follows: cooperate and continue cooperating 
until the other player defects n times ( 0≥n ), then defect 
forever. This is an adaptation of the popular Grim Strategy. 
We propose that this strategy can enforce cooperation in 
spatially dispersed wireless sensor classes playing the iterated 
N-player prisoner’s dilemma.   
 
Theorem: The cooperative solution can be achieved as a Nash 
Equilibrium of the infinite repeated game if δ is sufficiently 
close to unity and each player uses the Patient Grim Strategy. 
 
Proof: We use the fact that for any discount factor δ with 0< δ 
<1,  
 
1 + δ+ δ2 + ………= 1/(1-δ)                                                   (7) 
 
This follows from  
 
x =  1 + δ+ δ2 + ………                                                          (8)    
   =  1+  δ(1 + δ+ δ2 + ……) = 1+ δx 
  

We can simplify by considering the interaction between a 
pair of classes.  Since all classes play the Patient Grim 
Strategy then, the payoff to each is R/(1-δ). Suppose a player 
uses another strategy. This must involve cooperating for a 
number (possibly zero) of periods, then defecting forever. 
Once a player defects n times, where 0< n < ∞, his opponent 
defects forever, therefore, the player gets at most zero payoff 
in all the following rounds. His best response would therefore 
be to also defect forever. Since the game is infinite this is a 
significant loss of potential payoffs.  

Consider the game from the time t at which the first 
player defects. Let that be at t=0. The node’s maximum payoff 
from defection is n * T, afterwards the nodes receive at most 0 
payoff forever. Thus, the cooperate strategy is Nash if R/(1-δ) 
≥ nT, i.e. the payoff for cooperation is greater than or equal to 
the temptation to defect. 

The implication of this proof is that players can be 
encouraged to cooperate with the threat that if they defect a 
certain number of times (adjustable according to networking 
conditions) then they would be punished forever. This 
punishment is a denial of future network services. Our PGS 
requires only local information, namely, a history of 
interactions with neighbor. This makes it ideal for distributive 
networks. It is also scalable, since its performance is 
independent of the number of neighbors.    
 

VII. SIMULATIONS 
 

In this section, we present the simulation results for the  

two scenarios we investigated, namely, packet forwarding 
between mobile classes and between spatially dispersed 
stationary wireless sensor classes. Also, we present the 
simulation results we obtained for PGS. 
 
A..  Scenario 1: Packet Forwarding between Mobile Classes 

We simulated an evolutionary prisoner's dilemma model. 
Our simulation model is an extension of Wilensky’s model 
[17]. In our simulation model, it is assumed that an increase in 
the number of classes that cooperate will increase 
proportionately the benefit for each cooperating player. For 
those that do not cooperate, we assume that their benefit is 
some factor α multiplied by the number of nodes that 
cooperate. How much cooperation is stimulated is dependent 
on the value of α. As a consequence of this, the dynamics of 
the evolution in cooperation in our simulation model may be 
observed.  

 

 
Figure 2. Payoff matrix for wireless sensor classes ic  and jc , where 

ji ≠  and Ccc ji ∈,  

 We use the payoff matrix in figure 2 in our simulation. 
We arbitrarily select α to be 1.53. The following two strategies 
were implemented: 

(i) Cooperate at all times 
(ii) Defect at all times 

 
Classes are allowed to wander about the spatial domain 

and randomly interact with the other classes. All classes have 
an initial energy of 10,000 units. If all the energy of a class is 
used up it dies. For mutual cooperation both classes gain 1 
unit; for mutual defect both classes gain nothing. If one class 
defect while the other cooperate it gains 1.53 units while the 
other gain -0.5 units. We do not consider the energy used up in 
wandering. We vary the initial proportion of the population 
that cooperate and monitor the evolution of cooperation over 
time. 
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Figure 3. The mean frequencies of the Cooperate and Defect strategies of a 
population of randomly interacting mobile wireless sensor classes. The initial 
mean frequency of cooperators is 98%. 
 

493



 

Figure 3 shows how the fitness of the Cooperate and 
Defect strategies varies over time, and the proportion of the 
population that employs each. Initially, the proportion of the 
population playing the Cooperate strategy is 98%. This result 
validate our analytical solution and clearly demonstrate that 
the Cooperate strategy is not evolutionary stable, that is, as 
time proceeds the mean frequency of the population using that 
strategy approaches zero.  
  
B. Scenario 2: Packet Forwarding between Spatially 
Dispersed Stationary Classes 
 

 
Figure 4. The spatial layout of stationary classes of cooperators and defectors. 
 

In this simulation the classes are positioned at the center 
of a square grid (see figure 4). Each class is played against its 
eight neighboring classes iteratively and the scores are 
averaged. Strategies replicate by comparing the current mean 
scores of each class with its eight surrounding classes. The 
strategy with the highest mean is replicated. Mean values are 
initialized at the end of each generation. We use the same 
values for the payoff matrix as in the previous simulation. In 
addition, similar to the previous simulation, the classes initial 
energy value is 10,000 units. 

Figures 5a and 5b show the mean frequency and the mean 
payoff of the population, respectively, using the two strategies. 
In addition, figure 5b also shows how these strategies compare 
to the mean payoff of the population average. Initially, 98% of 
the population is using the COOPERATE strategy and 2% of 
the randomly distributed population is employing the 
DEFECT strategy. The figures show that the mean frequency 
and payoff of the population using COOPERATE stabilizes 
over time.  
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Figure 5a. The mean frequencies of the Cooperate and Defect strategies of a 
population of spatially dispersed stationary wireless sensor classes. The initial 
mean frequency of cooperators is 98%. 
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Figure 5b. A comparison of the mean payoff of the Cooperate and Defect 
strategies with the population average, of a population of spatially dispersed 
stationary wireless sensor classes.  
 

This is because in stationary spatially dispersed 
populations cooperators are able to survive by forming 
clusters and thereby reducing exploitation by defectors. This 
contrasts with our previous results for mobile classes with 
random interactions, where defectors outperform cooperators 
and drive the latter to extinction. In stationary spatially 
dispersed classes defectors are limited to exploiting only the 
cooperators on the edge of the clusters. However, we note that 
the results presented were dependent on the value of our 
payoff matrix. We observed that, if α is large then cooperators 
are forced into extinction.   
 
C.  Patient Grim Strategy in Spatially Dispersed Stationary 
Classes 

Our simulation setup is similar to that of scenario 2 with 
the following exceptions. 

(i) Instead of adapting to cooperate or defect based 
on the neighboring classes with the highest 
score, classes decide whether to cooperate or 
defect based on the history of cooperation and 
defection of their neighbors.   

(ii) We introduce PGS as a third strategy with 
varying initial proportions of COOPERATE and 
DEFECT. 

In Figure 6, we present the average of 100 simulation runs 
with varying initial proportions of the population using the 
COOPERATE, DEFECT and PATIENT GRIM strategies. 
Our result shows that our PGS delivers the highest mean  
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Figure 6. A comparison of the mean payoff of the Cooperate, Defect and PGS 
strategies in a population of spatially dispersed stationary wireless sensor 
classes. 
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payoff over time. This is because this strategy punishes 
defectors after a certain number of interactions by 
permanently defecting in all future interactions. This makes it 
impossible for defectors to exploit them continuously. In 
addition, it stimulates the creation of clusters of cooperators 
and those employing PGS.        
 

VIII. CONCLUSION AND FUTURE WORK 
   

We have presented an evolutionary game theory approach 
to investigate the conditions for cooperation in multi-class 
wireless sensor networks. Because of the complexity of the 
problem we have restricted ourselves to packet forwarding and 
not network flow. We have also focused on two topologies, 
namely, random and static topologies. We derived an 
analytical proof to demonstrate that cooperation is not 
evolutionary stable in populations playing the iterated N-
player prisoner’s dilemma. This is further validated with 
simulation results. However, we show that in the case of 
stationary classes there is some possibility for cooperation to 
emerge without any incentive. Finally, we presented our PGS 
protocol that enforces cooperation by punishment and proved 
that it is a Nash equilibrium of our problem. Our PGS protocol 
is scalable and requires only local information. 

The main focus of our future work is to develop an 
evolutionary model that incorporates network flow with 
players with different interests, and lightweight strategies that 
enforce cooperation.  
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